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Abstract

This paper describes a method of obtaining results from the

simulation of a countably infinite state positive recurrent aperiodic

Markov chain at a cost considerably below the cost required to achieve

the same accuracy with pure random sampling. By reorganizing k inde-

pendent epochs or tours simulated serially into k replications simu-

lated in parallel, one can induce selected joint distributions across

replications that produce the cost-saving benefits. The joint distri-

butions follow from the use of rotation sampling, a special case of the

antithetic variate method. The chains considered are of the band type

so that for the state space S = (0,.,2,...) there exists an integer 6

such that transition from a state i can move no further than to

states i - 6 and i + 6

The paper shows that an estimator of interest has variance bounded

above by 0(62(In k)4/k2) when using rotation sampling, as compared to

a variance 0(l/k) for independent sampling. Moreover, the mean cost

of simulation based on rotation sampling has an upner bound 0((61n k)2 )

as compared to at least 0(k) for independent sampling.

The paper also describes how one can exploit special structure in a

model together with rotation samplinn to improve the bound on variance

for essentially the same mean cost.

KEYWORDS: Markov chains; rotation sampling; simulation; variance reduction.
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Introduction

A recent paper (Fishman 1981) describes how one can use rotation

sampling, a special case of the antithetic variate method, to induce

substantial variance reduction in the simulation of a finite state

Markov chain. Since many discrete event simulations have an underlying

Markov structure or one close to being Markov, this variance reducing

proposal has clear appeal. Moreover, for large and possibly ill-

conditioned transition matrices, one may prefer the Monte Carlo or

simulation method with appropriate variance reducing plans to numerical F

analysis when solving for steady-state and first passage time distributions.

In fact, it may be the only feasible method for some problems. The present

paper extends the earlier results for rotation sampling to Markov chains

with countably infinite state space. Here the willingness to rely on the

simulation method for solution increases because the convenience of an

efficient computer code for matrix inversion is no longer a relevant issue.

The earlier work derived its cost-saving potential from viewing the

simulation of k tours in series of a finite (n+l) state positive re-

current aperiodic Markov chain as equivalent to the simulation of k

replications of the Markov chain in parallel. Although the marginal

distributions that arise with the two alternative formulations are

necessarily the same for corresponding variables, the parallel formulation

allows one to induce joint distributions across replications that lead to

a significant cost saving. The induced joint distributions follow from



-3-

the use of rotation sanpling, as described in detail in Fishman and

Huang (1980). The cost saving arises in two ways. Firstly, for fixed

n , run time in the correlated case is O(In k) in contrast to O(k)

for the serial simulation. Secondly, for fixed n the variance of an

estimator of interest has an upper bound 0((ln k/k) 2) for the corre-

lated case compared to 0(1/k) for the serial case.

In the present paper we replace the specification n < - with the

assumption that transition from a state can go to no more than 26 + 1

states where 6 is an integer. Then it is shown that the mean cost of simula-

tion has an upper bound 0((6 In k)2 ) and the variance of the correspond-

ing estimator has an upper bound 0(62(ln k)4 /k2) These results compare

favorably with those using independent sampling to simulate the behavior

of a Markov chain where mean cost is, at best, O(k) and variance is proportion-

al to I/k

The paper also shows how one can combine rotation sampling with

special structure in the chain to achieve additional variance reduction

without any essential increase in cost. The relevance of this result be-

comes more apparent as the number of states occupied by the k r:. -allel

replications increases at a given step. The benefit is achieved by induc-

ing an appropriate joint distribution for the transition paths of aZZ

replications from all states at each transition while preserving the

correct marginal distribution for each replication. By contrast, in the

earlier use of rotation sampling we preserved the marginal distributions
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but merely induced an appropriate joint distribution for the transition

paths of the replications in a given state on a given transition, leav-

ing the sets of paths for different exited states conditionally indepen-

dent.

Section 1 introduces the Markov chain notation. It also formulates

the experiment as k independent tours where a tour begins with an exit

from state 0 and ends upon first entry into state a . A reformulation

in terms of k independent parallel tours or replications is presented

and then extended to the case of k correlated replications using rotation

sampling. Results for mean number of transitions, expected cost and vari-

ance are then derived. Section 2 derives the comparable results when com-

bining rotation sampling with special structure. Section 3 demonstrates

how the results apply to a simulation of a nearest neighbor Markov chain.

1. The Infinite State Chain

Consider a positive recurrent aperiodic Markov chain with state space

S = (0,1,2,...) and transition probabilities {Pij; i,j = 0,1...)

where there exists a positive integer 6 such that

pij = 0 for Jli-jJ > 6

and

1+6 (1)

j=max(O,i6) PiJ
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It is convenient to describe an alternative, but equivalent, representa-

tion to (1) whose value is apparent when actually generating sample

paths by simulation on a computer. Let s. denote the total number of

states that have positive transition probabilities from state j and

let m jr r = l,....s. denote the ordered sequence

(Mjr < Mj,r+l; r l...s. - 1) of the s. states to which entry can

occur from state j Then one has the representation

o. > 0 r = 1 ... Is

S. 1rJ Pjmr:1

r=1 mjr

6-max (Imjl - Ji, Imjs - j) j = 0,1.

Let Ai denote the reward received when a jump occurs from state

i to state j and assume for the moment that Ai 0(I ) . Suppose

one wishes to estimate a the mean reward received on a path begun

with a departure from state 0 and terminated with the first entry into

state a . If N gives the number of transitions from i to j on

the mth of k independent replications and Sa = S - a , then

Sk A N(m) (2)
k k m=l iESa jeS ij ij

is an unbiased estimator of VOa and var Rk l/k . Here each

L -
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replication begins with a departure from state 0 and ends upon entry

into state a. To simulate this chain on a computer for k consecutive

independent replications or epochs, one need only set paO = I and

Paj = 0 for j = 1,2,....

Let Tk denote the number of transitions in k epochs. Clearly

E T k = O(k) . Let Sk denote the cost of simulating k replications

in series. In the case of (1) with a finite state space of n + 1 ,

one has O(k) _ E Sk !0 (6k) . The lower bound applies if one can store

all the distributions and the aZiases required to use the alias method

of Walker (1977). Also see Kronmal and Peterson (1979). As n increases

the feasibility of this approach diminishes. The upper bound 0(6k) re-

sults from application of the inverse transform method to determine the

branch taken from each state. Since in the infinite state case ole can

conceive of using the alias method for a finite set of commonly entered

states and the inverse transform method for less frequented states, taking

E Sk ? O(k) is a useful bound for comparative purposes.

Consider simulating the Markov chain with replications executed in

parallel. Simulation begins with an exit of all k replications from

state 0 . Then one sets paa z I and p a = 0 jES a , if state a is

to be absorbing state. Note that the chain is absorbing with Sa a

transient set of states. The simulation ends with the entry of the last

of the k replications into state a 'Let K ij denote the number of
ijm

,1
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independent replications that move from i to j on transition i and

let Kj, denote the number of replications in state j after transition

2. Then

= 1 00 i$A j Ki j o
Rk k =I

is an unbiased estimator of p0a with var Rk var Rk . Note that

~k
Kij: k I 

((m)3)
z= i,jcS m=l ic S jES ij

a

Let

Tk = min (Z: K k).

From Theorem I of Fishman (1981), one has E T < O(k) Now one' k-

easily sees that at transition X no more than min(k, 6)

states are occupied. Therefore, no more thAn 6t(t + 1)/2 states

are occupied in t transitions and the expected numher of occupied

6states has upper bound .(E T' + E 9 0(6k) . Let

denote the cost of simulating k independent replications in parallel

and note that no more than 26 + I states can be entered from a given

state. If one uses a sampling program as in Ahrens and Dieter (1979)

or in Fishman (1979), which have bounded computation times, to generate

I!

.. . T i -..-.... * .- r---. • . o
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the binomial variates K.jmjr for jrS, r 1 l,...,s. and 9. 1,2,.,

then

E S k. Q(ck)

This observation is peripheral to our main interest and we merely mention

it for completeness.

Once the replications are to be run in parallel an opportunity ex-

ists to induce a desirable form of correlation across replications while

preserving the required distributional behavior along the sal.?le path of

each replication. Define

w
q.z,.4 P. W = 1,...,s. j = 0,1... (4)

j ' =l v'

Let U,U1, ... ,LIK. be i.i.d. random variables from U(CO,l) where

Kj > 0 is given. Then for parallel replications one has

Kim. =1 I Ij ir)(Ur) (5)mjr+ m=l ,-

where

qjo 0

and

IEuvi(x) 1 u x < v

- 0 otherwise



-9-

Observe that on each transition (Z) a Bernoulli trial determines

the path that each replication follows, independent of the paths

uf other replications. Moreover, var(K jmiW+IK) = Kji Pjm ( - PJm

,m 2.1 r j r jm

Although the Bernoulli property must be maintained to assure that the

sample paths for eachi replication follows the rnrrpct probability

law, the independnce across replications is but a consequence of

the independence ol Ul ... K . Hereafter we use a prime superscript

(') to denote parallel correlated replications.

Suppose that for r - 1,...,K jz

U r-l U < lI r-I

Um 7U7+ K. (6a)

+ r-l otherwise
KjZ

so that

Kj

K. I [qj q jr)(U ) r=l,...s. s (6b)
Kmjr + n=l j,r-I'J

We refer to this representation as rotation sampling. See Fishman

and Huang (1980). Using the notation x = x (mod 1) and LxJ x - x

one then has from Theorem 5 in Fishman (1981):

BI
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(i) For r = 1,...,s

Kmj+1 = LQJ - LPJ - 1 w.p. max(,-) -

= LQJ - LPJ w.p. 1 - max(P, ) + min(1,P)

= tQJ - LPJ + I w.p. max (P, ) - P (7a)
I I'

where P K- Kq

(ii) var(Kjr Z+IlKZ) = (Kjpjm )(I - KjPjm r) - 1/4

(iii) var K. = 00)jmjr i+l (1

Since only two of the three outcomes in (i) have positive probability

at a time, Kjmjrk+l has the Bernoulli property. Most importantly,

note in (ii) that the variance is independent of K., , in contrast

to the linear dependence on Kj, in the case of independent replications.

Also, the required Bernoulli property for each replication is preserved.

As an alternative to (6b) , (i) enables one to write for

r = 1.... s

Kjm jrz+l = LQJ - LPJ + I P- T

(7b)

: LQJ - LPJ - IE )(U) T >

,
t

* !



This expression is considerably more efficient to use than (6b) is in

practice for its cost depends only on the number of occupied states and

not on the number of nonabsorbed replications. Hereafter, we assume

that (7b) is used.

Let

I I

A. K (8a)Rk j,mcS jm jmi 8a

Rk = R' (8b)

Here RkZ denotes the sample contribution to reward on transition Z

Using the results in (7) one can easily show that var Rkt 4 0(622)

which is independent of k . In the case of a finite state space

Fishman (1981), shows that for Tk = min(t: Kat k) and cost Sk
I I

E Tk ! E Sk O(In k) and var Rk ! O((Ink/k)2 ) . However, one

cannot carry over these results directly for the case of an unbounded

state space. Before deriving the corresponding results for this case,

we study an interesting property of Tk which holds for both finite

and infinite state models. Because of the restrictions on the pij ',

at most 6 + min(a,6) transient states have nonzero entries on transition

Tk - 1. In fact, absorption can occur only when all the nonzero entries

are in states a - min(a,6),...,a-1 and a~l,...,a+6 in the way specified

in Lemma 1.
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Lemma 1. In order for total absorption to occur on transitions

1+l, X+2,..., necessary and sufficient conditions at the end of transi-

tion I are

(a) Kj, = 0J - aJ > 6

(b) K. 1/(0 - ai -al : 6

Proof. Condition (a) is a consequence of pja 0 for ji-al > 6

For part (b) we note that total absorption using rotation sampling

implies

I 1 8

Kjat+l = LKji PjaI + I = K - a( 6

For a specific j this occurs with positive probability if and only if

KMs I/(l-Pja)

Lemma 1 provides the basis for an initial characterization of

absorption time in Lemma 2.

Lemma 2. Let k > 1/(l-a) where a -sup Pja
j ES a

Let

T k min(t: conditions (a) and (b) of Lenia I obtain)

and
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Yk = Tk -Tk

Then

(i) E Tk = E Tk + E Yk

(ii) Yk is independent of k.

Proof. Part (i) follows by inspection. Part (ii) makes use of the

fact that since all Kj2. , I/(l-a) -. k for = T + 1, T + 2,...,jZ ~kk
then the remaining time to absorption Yk must be independent of k .

In effect, rotation sampling is nonoperative for t > Tk ki

Theorem I provides a more comprehensive characterization of absorption

time Tk

Theorem 1. Let

(Z) = probability of moving from i to j in . steps.Pij

I I

Mijk = K jR - Ki , _l Pij

Then

(i) Kit= k (t)+ Z
i#i it

where
t- 1(-L

2i = M. M p(t-Z) JESa
jt i a ijt + t=1 i, mESa ime mj a

and

Kat = k(l - :Pa + Zat
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where

t-1 r)Zat = a Mmat + Z=t 1Mim M (I- pma
=Z~ M £l i ,m1Sa r~l

(ii) Tk = O(In k) w.p.l.

(iii) E(Tk)r = O((In k) r )  r

See the Appendix for prnof.

Theorem 2 shows the benefit of rotation sampling for the representa-

tion in (1)

Theorem 2. For the simulation of a Markov chain as in (I) using

rotation sampling as in (6a) and (7b)

(i) E SK ! O(Wln k)h

(ii) var R' S O(62 (in k)I /k')

E Sk  var Rk(iii) V(R = E S var Rk 0 (k2/64(In k)6 ).
vkoRk) =E Sr var R

See the Appendix for the proof. The expression V(Rk,Rk) gives a

measure of the relative efficiency of rotation sampling based on (7b)

as compared to independently sampled replications for simulating the

chain (1)
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It is of interest to compare these results with those in Fishman

(1981) for an n + 1 state chain. Although those results hold for the

absorbing state a = 0 , they also apply, with minor adjustment, more

generally. In particular. E Sk 5 O(n
2 In k) and

var Rk s 0((n In k)2/k2 ). These are consistent with () and (ii)

of Theorem 2 when one notes that the mean number of transients states

entered has an upper bound mln(O(n In k), 0(6(ln k)2)) and the number

of states to which a transition can occur has an upper bound

min(n+l, 26+1)

Although the results for var R hold for bounded {Ai } , the
k

results for the variance reduction measure V(Rk , Rk) and the absorption

time Tk apply more generally. For example, the relative desirability

of the proposed sampling plan continues to grow with k for the family of

reward functions {A i = cO + 1
p  (cZ ik + d jzz)) . Section 2 uses a
£:1

reward function of this type to show how one can achieve additional variance

reduction.

2. Exploiting Special Structure

Although Theorem 2 shows that for large k rotation sampling

offers a clear advantage over independent serial replications,

the factors 62 and (In k)4 in the bound on var Rk are sufficiently

broad to make one look for improved convergence for moderate k

Consider the sampling at transition t . Recall that rotation.

sampling applies to the K transitions from state J , but

transitions from different states are independent, given {Kj. ; Sa .

We now describe how a modification of this independent sampling can

~c
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for special cases of (Ajm; j,m 0,1,2,...} lead to a considerable

reduction in variance. Theorem 3 provides the basis for the approach.

Theorem 3. Let

0 < Pi <

q-1" 0

qi =qi- + Pi i = 0,1,...

= -I- -(U) if qi-

'qii-1 qiI I q i, q i-1)(U) if qi-1 , qj

Ys i=0 Xi  s = 1,2,....

where U - U(0,1) . Then

(1) Ys = Lq sJ + IO,q s)(U) s = 1,2,...

(ii) Zs,t = Yt - Ys = LqtJ LqsJ + Js,t (U) t > s

where

Js,t(U) I rs, t)(U) if qs s qt

8--qt,q.,)(U)  if q S> qt

See the Appendix for the proof. The significance of this result

becomes apparent shortly.
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Consider a Markov chain for which s= s1 =. 0 S 2 so that

one has

1 I I

Rk+1 =jESa(B K; + + A. K.I) (10)
k~tl =lic aj Jm11+1 3 3z (0

where A. = A. and B. = A. - A. for j = 0,1 .... and
J Jmj2 J ml jj

B = 0 . Recall that

I I

K imjz+1 =LKjzPjm l + I[0,p )(Uj)

where pj M PJ and Uo,U1,U2 ,... are i.i.d. from U(0,1) , so

that

Rk,t+l = Ct + J j I[o,pj)(Uj) (1)

where

Cz Jjc a (B LKjzPjmj + Aj K;,)

Let

* 1

= max(j: K' > 0)x JA
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Then from Theorem 1

var(RkLlI JE .~)S 02) (12)
j =0

Now one can write '(11) equivalently as

(13

Rk,,+l = C,+ Ij=0 (B - Bi) m=l (13)

where one should note that

IfO P)(Um) = I)-mm(UM) if14

mm rni

(14)

q l- q[m ml(U m)  if q-1~> q

As an alternative to i.i.d. UoUI,..., set U0 = U I U

where U ~ U(0,1) . From Theorem 3 , one has (13) as

k,t+l = C + j (B j - B.- j (15)

Now observe that

var (Rk,t+lIKjI jeSa) =0  - j_1 1]
2  (16)

4 J=O
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which is to be compared with (12) . However, a more appealing case

exists. If for J = 0,1,... either B B- or B : B%-l then

one has

vrRk,i+l~j j fS a < j,/

As an example, consider the reward

AjMjr = c l + C2 mj + c 3

Then

B .A.j -A. j c (m.l - in.)
3 jfli J 2  2j

so that (15) has for either m ji > mV or mj, < mj2  for =0,..

var(Rk,+ lKI~ ja) : £c (m.* -m )/2]2 < CC (26 + 1)12)]2 =0(62)

whereas (11), based on independent U0,U I.. has

var(Rk, IK~ ic 5 )2'i -ii )
kX+1 i a T (J IJ2~ :5 O(62j* )
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The extent to which one can exploit special structure for more

general {.A r=l,...s.; s. 2 j=0,l,...} and for the casejm. jjr

Is. 2) remains a topic for future research.

3. An Illustration

This section describes a simulation designed to show how the

theoretical results of Sections 1 and 2 fare in practice. Consider a

single server queueing system with independent and identically distri-

buted exponential interarrival times with rate X , independent and

identically distributed exponential service times with rate w > X and

infinite capacity. As an alternative to this continuous time repre-

sentation one can view this system as a nearest neighbor Markov chain

with pjj =
1 =w/(X+w) j = 1,2,... .. Here 6 = 1, sj = 2 for

j = 1,2,... and the absorbing state is a = 0

The objective is to estimate the mean number of customers in system,

X/(w-x) (e.g. see Gross and Harris 1974, p. 67). In the serial

model we estimate this quantity by

1 1 k J(N(m) + N(m)
^ + [Mal -- j,ji J+1 j (17)

1 1+II k a ,(m)

.-1 J. ( J.j- j J
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In the parallel model using rotation sampling we estimate P

by

I Tk 00

iijl I

J-Ij l(Kj ,j - , 1 Kj,j+l Z )

,k j .-~ ,j+li

Note that (17) and (18) are ratio estimators in contrast to (2) and

(8b) which are Linear estimators. As a result, (17) and (18) are

biased estimators of p . Therefore, our evaluation focuses on mean-

square error rather than on variance alone. The motivation for consider-

ing ratio estimators arises from the observations that they commonly

arise in regenerative simulation.

For convenience and without loss of generality we set w = 1

Table 1 gives the number of independent macroreplications performed

for each value of k and experimental layout (p) . Table 2 presents

Table I

Experimental Layout
(k - 2m)

Number of Macroreplications

P = / 000 100

0.5 m = ,...,ll m - 12,...,14

0.9 m = ,...,ll m = 12,,..,14

.1
4-{
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ratios of interest. Here c.i and MSE.i denote the CPU time and mean-

square error for model i where i = I denotes k independent tours in

series, i = 2 denotes parallel replication with (7b) and i = 3 denotes

parallel replication using (7b) and (1 4).

For P = 0.5 Table I reveals that k =16 is the first sample

size that gives benefits for both models 2 and 3. Also, note the

strong favorable performance for k ; 256 .For p = 0.9 the

benefits of both models 2 and 3 do not arise until k =1024 . The be-

havior thereafter shows substantive variance reduction. In presenting

results for small values of k we merely sought to provide a comprehensive

picture of how the models behaved. In practice one normally would expect

to use a considerably larger k so that the risk of an unfavorable

variance reduction is small. Since limited time was spent on the computer

code for models 2 and 3, one also suspects that careful attention to pro-

gramming efficiency would move the indifference points to smaller values

of k for both p 0.5 and 0.9.
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Table 2

Simulation Results for Example

)=D. 5 p=0.9

c1.MSE I  c)'MSEI cI'MSEI cI MSE I

c2E' M 2 c 2 MSE, MSE 3

(1) (2) (3) (4)

2 .50 .54 .18 .22

4 .53 .44 .22 .20

8 .83 .67 .23 .19

16 1.30 1.00 .17 .28

32 1.32 2.07 .22 .25

64 2.23 3.69 .29 .33

128 4.53 5.82 .33 .42

256 7.70 14.71 .42 .67

512 16.46 32.06 .54 1.40

1024 37.99 64.38 1.00 2.07

2056 71.32 174.11 1.95 4.59

4096 230.02 583.63 3.70 10.38

8192 451.79 1476.74 4.98 22.70

16384 696.20 3783.70 15.46 42.82

32768 2366.17 10280.72 17.42 63.00

65536 8526.68 22743.06 37.21 143.30
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Appendix

Proof of Theorem 1 (i) comes from applying rotation sampling to k

replications in state j = 0 on transition i = 1 , then applying it to

each K'.2  for states j 0.... , on transition t = 2, etc. One then

regroups the resulting terms to give {Kitf JES}

For (ii) note that

IMiUZI S I icSa jES

ifs jesMijt

E Zt= 0

S(t) S k(l -

kPOj jt Oj t)Jca

and

-W p(0 ) Z a k P()Zkl -1 Oa ; at k= 1 Oa
£=l O

Most importantly, observe that Zit/k does not depend on k Also, one

has
, tTk min (t: Zat -k(l Pjtl
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Now for the absorbing state there exists pc(O,l) such that

P = (

so that

Tk = min[t: In O(pt ) = In (-Zat) - In k]

= min[t: t In O(p-l) -in (-Zat) + In k]

from which it is clear that Tk = O(ln k) w.p.l. (iii) is a direct

consequence of (ii) and is relevant when deriving var Rk

Proof of Theorem 2. Recall that no more than 6t steps are visited at

transition Z and no more than 6t(t+1)/2 are visited in t transi-

tions. Also, at state j one needs to determine which of the 26 + 1

possible states are entered by the Kjk replications at transition

z + I . Using (iii) of Theorem I gives

E Sk S- (26 + 1)6 E[Tk(Tk + 1) 0((6 In k)2)

which proves (i)

For (ii), observe that

K3 k p(O-l)pij + jKijz = 1 k jO Wi.
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where

Wij =Zi, -rij [o,r i(U)

r = (k p (tl) + Zi, 1- j

and U i is the uniform deviate used to determine paths from state i

on transition t . Note that E WiUt = 0 and more generally that, like

ziZi  W is not a function of the magnitude of k . Recall that
Ii

var R'k 
< 0(62t2)

Now, one can write

R = I I A.. (k p(t- +W.)
iESa JES

and
I #I

var R = E I var(RkIT) + ET' H2'
k Tk k k Tk

where T#

Tk icSa jfS=l Tk

Since

var(RkjT k) 5 O((6T')2)

and

kIHT'1 ! O(6(Tk) 2 )

Tk k
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one has

k2 var(RkjTk) s O(62 (Tk)')

Tkk

so that

k2 var Rk s 0(62(In k)4)

Part (iii) follows by substitution.

Proof of Theorem 3. Clearly Xi ~ BeA(pi) i l,...,m Let r = Lqs]

Let i], ... ir denote the indices at which qit < qit I  for t =1,..,r
t t

Then one can represent Ys as

Y r q MI [ I (l+ ()Y =  t=l {If - I[ i -t -!) (U=1 + i! qi-l' qi ) (}

ilt

Now straightforward evaluation gives (i) so that Ys Lqs- J BeAq5  s)

In particular, var Ys = q ( qs) = 0(1)

For part (ii) we have

S lqs2 J lqsIJ + I[OAS2 ) (U) -I -q 2 (U)
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Since

-1 1729s (U) ifjS s

(ii) obtains
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